Artificial Intelligence (AI)

00101010

0101

01 010 1011 0010

001 001 🖍

101101

Background and Application in the Smart Factory

101 010 🔵

Artificial intelligence (AI) is the ability of a computer or program to adapt to human behavior or thinking and perform complex tasks.

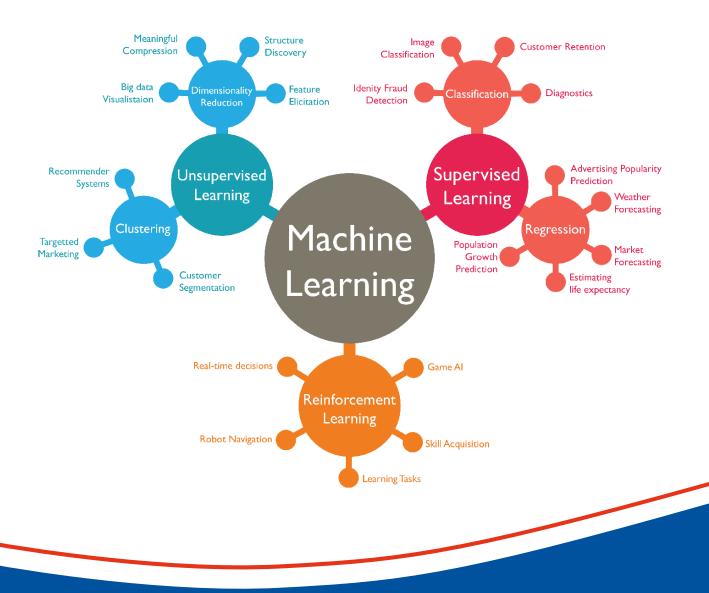
Al can find answers and solve problems independently without having to be programmed for every purpose.

In this slide deck, we look behind the scenes.

What Is Artificial Intelligence?

Weak AI refers to all systems that exist today. For example,

- character, text, image, and speech recognition.
- individual control of advertisement.
- automated translation.
- expert systems (e.g., guidance based on a knowledge base).
- navigation systems.
- autocomplete and suggested corrections for searching.

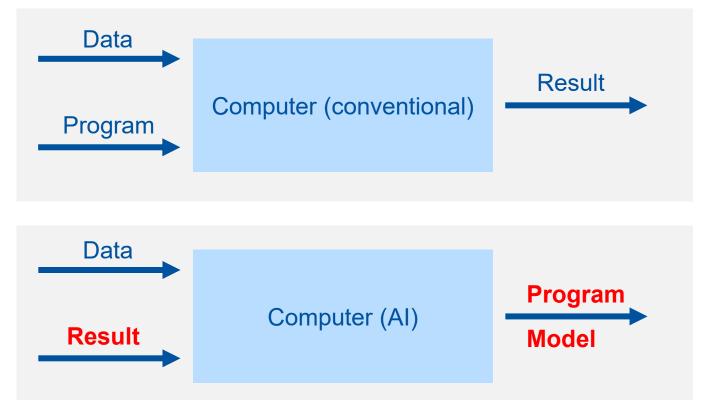

Strong AI or **superintelligence** may be possible in 20 to 40 years. Strong AI...

- has a logical intellectual power.
- can also decide in the event of uncertainty.
- combines all skills to achieve an overriding goal.
- has empathy, self-knowledge, memory, and indeed wisdom.
- knows love, hate, fear, or joy.
- may even have its own consciousness.

ChatGPT is also weak AI. It merely arranges learned words based on statistical methods to produce a more or less readable and meaningful text. However, the results suggest that this application is on the borderline of being strong AI but that is debatable.

We Distinguish Between Weak Al and Strong Al

Artificial intelligence (AI) is a topic that has been hyped in recent years.


Terms such as artificial intelligence, machine learning, neural networks, and the like are thrown around at will.

It is generally assumed that machine learning (ML) is a sub-area of AI. ML is the basis for most AI applications.

Al and ML – What is the connection?

A computer conventionally processes **data** based on a pre-defined **program** to produce **results**.

This **requires** an understanding of all influencing factors.

By contrast, machine learning is trained with **data** and matching **results**. Here, a **program** is produced that is also called a **model**.

In this case, the interaction of all influencing factors is **not** necessarily known.

Machine learning (ML) is the basis for many use cases in the Smart Factory.

	Classification – detect patterns
	Anomaly Detection – detect deviations from the standard
FUTURE?	Prediction – derive predictions
Probatility Limit is an analysis of the second state of the second	Planning – perfect solutions for planning tasks

Find below three examples from the Smart Factory.

Typical Use Cases for Al

Example: Predicted Setup Time

Al-based Setup Time prediction provides realistic default values!

- Record setup times that occur during production – e.g., with MES HYDRA.
- Al analyzes various factors influencing the setup time and creates a prediction model.
- The model is used to calculate setup time predictions that match actual influencing factors.
- Use these realistic predictions for your (automatic) detailed planning.

ROBOTICS CONTROL PANEL

Al-based Setup Time Prediction

abla Al-based setup time prediction

AI-based setup time prediction

Drag a column here to group the displayed data by this column

	Setup change matrix							Setup time prediction		
	Group	Workplace	Туре	From	То	Additional setup time	Ignore static setup time	Additional setup time	Ignore static setup time	Deviation [%]
~	Machine group	60610	Tool	B-4026-29-6	B-8927-29-1	0:20:00	\checkmark	0:17:45		-11.250
	Machine group	60610	Tool	B-8927-29-3	B-8927-29-5	0:12:00		0:11:38		-3.050
	Machine group	60610	Tool	B-9901-01-7	B-8927-29-6	0:35:00	\checkmark	0:37:58		8.480
	Machine group	60610	Tool	B-8018-29-6	B-8927-29-2	0:30:00	\checkmark	0:20:43		-30.940
	Machine group	60612	Tool	DGF-L-FFU021	DGF-R-OC0021	0:08:00		0:08:21		4.380
	Machine group	60612	Tool	DGF-R-VG0021	DGF-L-VG0021	0:11:00		0:10:21		-5.910
	Machine group	60612	Tool	DGF-L-OAS021	DGF-L-VP0021	0:15:00		0:12:44		-15.110
	Machine group	60612	Tool	DGF-L-VP0021	DGF-L-FKA021	0:40:00		0:42:11		5.460
	Machine group	60612	Tool	DGF-L-VP0021	DGF-L-FFI021	0:10:00		0:09:09		-8.50
	Machine group	60614	Tool	B-9901-01-7	B-8927-29-6	0:35:00		0:37:58		0.00
	Machine group	60614	Tool	SW-100X8	SW-20X6	0:03:00		0:03:23		12.780
	Machine group	60614	Tool	SW-100X8	SW-20X7	0:30:00		0:37:11		23.950
	Machine group	60614	Tool	SW-100X8	SW-30X8	0:18:00		0:17:12		-4.440
	Machine group	60614	Tool	B-9901-01-7	B-8927-29-6	0:06:00		0:05:38		-6.110
	Machine group	60614	Tool	SW-40X6	SW-4026-12	0:27:00		0:26:22		-2.350

Experience has shown that the predicted setup times are significantly more realistic than the usually outdated default values from the ERP.

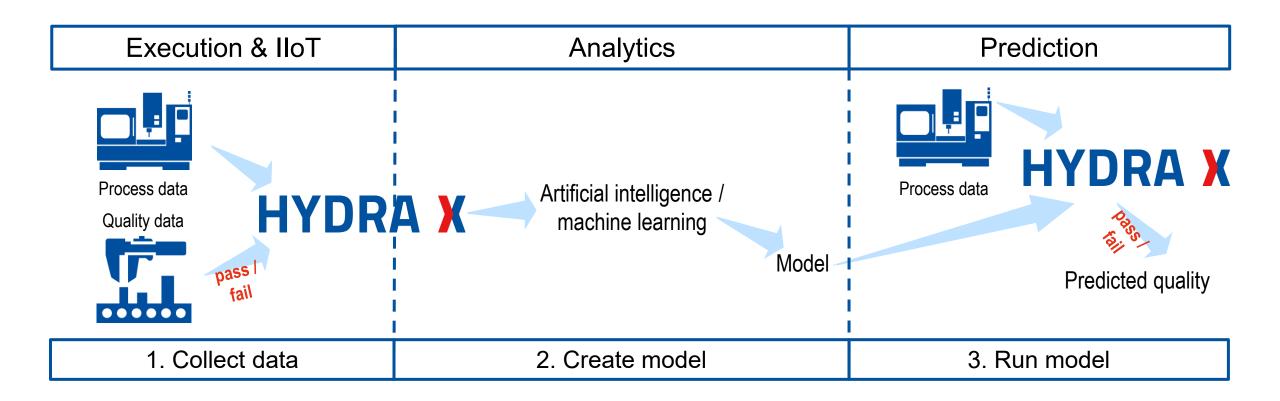
10.12.STD.36261

Al-based Setup Time Prediction At Work

Al calculates additional setup times for each setup change and compares the times with current default values.

0

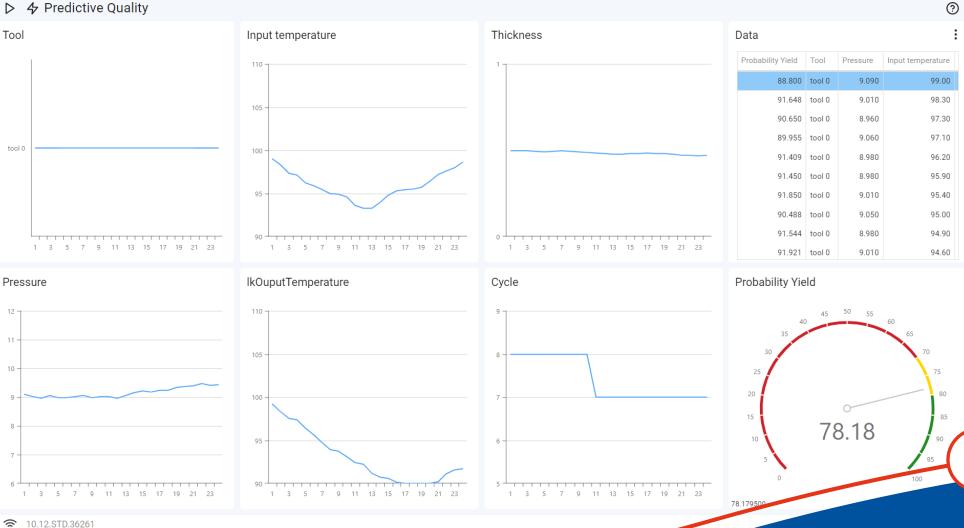
S:


Predictive Quality enables the prediction of product quality (**pass** / **fail**) based on currently recorded process data.

The **aim** is to detect scrap at an early stage and avoid further processing of these parts.

The prediction is based on machine learning.

Example Predictive Quality


Predictive Quality can forecast product quality during manufacturing based on current process values and an AI model.

Predictive Quality Workflow

Current process values are displayed in six diagrams. Based on these process values, AI calculates the probability of the current part resulting in a pass (tachometer chart bottom right).

Predictive Quality How It Is Used

miller 🚨

:

Example: Production Planning with Al

1111111111111111111

107 war mit bes linder UN.22 cate Se FEDRA

Planning facts

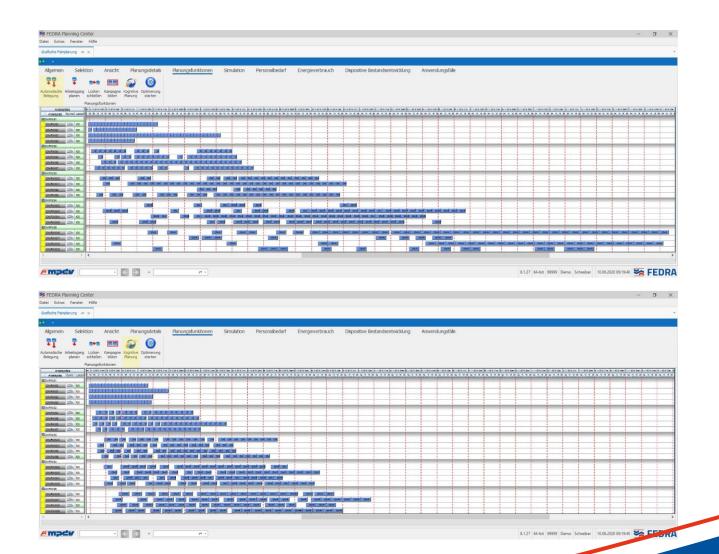
Even 500 operations in detailed planning result in 10 to the power of 1000 possible planning options.

That's more planning options than there are atoms in the universe.

Restrictions and dependencies must also be considered, which makes for a high complexity.

Automatic detailed planning is therefore a perfect match for AI.

Approaches for Artificial Intelligence



Until now, automatic production planning was based on heuristic methods. **Heuristics** only ever include the current step and make the **next best decision** based on this, which results that the supposedly worse options are not even considered.

Automatic production planning with artificial intelligence is a new feature. The AI method **Reinforcement Learning** takes a long-term view of planning scenarios, finds existing bottlenecks as part of several planning runs, and decides on the **best, overall option**. Once a decision has been made, it may also be changed again.

Benefits are apparent!

Heuristics vs. Reinforcement Learning

Heuristic planning (above) becomes gradually less efficient if there is a large amount of dependencies, because once a decision has been made, it can no longer be changed. This quickly leads to many gaps in planning.

Al-based Planning (below) takes a comprehensive view of planning scenarios and searches for a global best-case solution. The result is more efficient: orders are processed faster and with fewer gaps.

Al in Automatic Planning

There are plenty of use cases in the Smart Factory for artificial intelligence.

With the Al Suite, MPDV offers a set of standard applications that can be used straight away without much effort.

Al stands for Artificial Intelligence

Al Out Of The Box

Manufacturing IT provides transparency in production today ...

... and the day after tomorrow AI decides autonomously.

Find out more about AI on our website.

Our Vision for the Smart Factory

1.100.000

people work with our solutions every day

1.750 installations in all

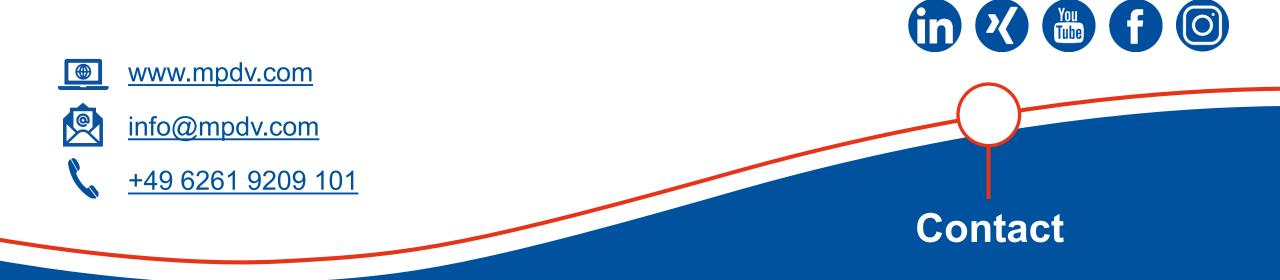
industries

73 million

euros group turnover

MPDV Group in Numbers

520 employees **13** Locations worldwide


45 years in the market & market leader for manufacturing IT

Would you like to find out more about artificial intelligence in the Smart Factory?

WE CREATE SMART FACTORIES

